All questions are for separate science students only ## Q1. This question is about the Earth's atmosphere and naturally occurring polymers. (a) The figure below shows how the estimated percentage of nitrogen in the Earth s atmosphere has changed since the Earth was formed. Describe the trends shown by the graph. Use data from the figure above. | The form | percentage of oxygen in the Earth s atmosphere has increased since the Earth was ed. | | |----------|--|-----| | This | is because of photosynthesis. | | | The | word equation for the photosynthesis reaction is: | | | | carbon dioxide + water → glucose + oxygen | | | (b) | What happened to the percentage of carbon dioxide in the atmosphere when photosynthesis began? | | | | Tick (✓) one box. | | | | The percentage of carbon dioxide decreased. | | | | The percentage of carbon dioxide stayed the same. | | | | The percentage of carbon dioxide increased. | | | | | (1) | | (c) | The photosynthesis reaction takes in energy from the surroundings. | | | | Complete the sentence. | | | | Choose the answer from the box. | | | | carbon dioxide light water | | | | The source of the energy used in photosynthesis is | (1) | | (d) | Which two produce oxyge | en by photosynthesis? | | |-----|----------------------------------|---|-----| | | Tick (✓) two boxes. | | | | | Algae | | | | | Animals | | | | | Plants | | | | | Viruses | | | | | Yeast | | | | | | | (2) | | (e) | The glucose produced du | uring photosynthesis can form naturally occurring polymers. | | | | Which two are naturally o | occurring polymers that can be produced from glucose? | | | | (chemistry only) | | | | | Tick (✓) two boxes. | | | | | Cellulose | | | | | DNA | | | | | Poly(propene) | | | | | Protein | | | | | Starch | | | | | | | (2) | DNA molecules contain two polymer chains. A DNA molecule has a relative formula mass ($\textit{M}_{\rm r}$) of approximately 140 000 000 000 | (f) | What is the approximate relative formula mass (M_r) of the DNA molecule in standard form? (chemistry only) | | |-----|---|-----| | | Tick (✓) one box. | | | | 1.4 × 10 ⁹ | | | | 1.4 × 10 ¹⁰ | | | | 1.4 × 10 ¹¹ | | | | 1.4 × 10 ¹² | | | | | (1) | | (g) | What is the approximate relative formula mass (M_r) of each polymer chain in the DNA molecule? (chemistry only) | | | | Tick (✓) one box. | | | | 70 000 000 000 | | | | 140 000 000 000 | | | | 280 000 000 000 | | | | 560 000 000 000 | | | | | (1) | | (h) | Complete the sentence. (chemistry only) | | | | The shape of a DNA molecule is a double | (4) | | | | (1) | | How many differ | rent nucleotides are present in a molecule of DNA? (cher | nistry only) | |------------------------|--|------------------| | Tick (✓) one bo | DX. | | | 1 | | | | 2 | | | | 3 | | | | 4 | | | | | | (1) | | | | (Total 13 marks) | | | 1 | |---|----| | u | Z. | This question is about addition reactions. The figure below shows the displayed structural formula of ethene. | (a) | Complete | the | sentence. | |-----|----------|-----|-----------| |-----|----------|-----|-----------| When bromine water is added to ethene, the bromine water changes from orange to (1) Chlorine reacts with ethene. (b) What is used to identify chlorine? Tick (✓) one box. | A lighted splint | | |-------------------|--| | Damp litmus paper | | | Limewater | | (1) (c) Which of the following shows the displayed structural formula of the compound produced when chlorine reacts with ethene? (chemistry only) Use the figure above. Tick (\checkmark) one box. (1) (d) Chloroethene can be used to produce a polymer called poly(chloroethene). The displayed structural formula of chloroethene is Which represents the structure of poly(chloroethene)? (chemistry only) Tick (✓) one box. Ethene can be used to produce another polymer called poly(ethene). The table below shows information about poly(chloroethene) and poly(ethene). | | Poly(chloroethene) | Poly(ethene) | |---|--------------------|--------------| | Density in g/cm ³ | 1.5 | 0.9 | | Temperature at which polymer completely melts in °C | 260 | 120 | | Simplest whole number ratio = :: | |---| | Poly(ethene) and poly(chloroethene) can both be used to make pipes. | | Suggest why neither polymer is suitable for pipes carrying steam at a temperature of 300 $^{\circ}\text{C}$. | | Use the table above. | | Poly(ethene) and paper can both be used to make shopping bags. | | Poly(ethene) is produced from crude oil. Paper is produced from trees. | | Suggest one reason why paper is more sustainable than poly(ethene) for making shopping bags. | ## Q3. This question is about glass and polymers. Beakers can be made from borosilicate glass or poly(propene). Table 1 shows information about materials used to make beakers. Table 1 | | Material used to make beakers | | |---|-------------------------------|---------------| | | borosilicate glass | poly(propene) | | Temperature at which melting begins in °C | 850 | 160 | | Flammability | does not burn | burns | | Resistance to impact | shatters | tough | | Cost of 100 cm ³ beaker in £ | 1.50 | 2.00 | (c) Which is a raw material used to make borosilicate glass? (chemistry only) Tick (✓) one box. Boron trioxide Clay Limestone (1) Poly(propene) is produced from propene. The displayed structural formula of propene is: (d) **Table 2** shows some information about the elements in one molecule of propene. Table 2 | Symbol for element | Name of element | Number of atoms of element in one molecule of propene | |--------------------|-----------------|---| | С | | | | Н | | | Complete Table 2. (2) (e) Which structure is the repeating unit of poly(propene)? (chemistry only) Tick (\checkmark) one box. $$\begin{array}{c|cccc} & H & H \\ & C & C \\ & H & H \\ & H & D \\ & C & C \\ & H & H & D \end{array}$$ (1) - (f) Poly(propene) is produced in three stages: - Stage 1: separating large alkane molecules from crude oil - Stage 2: producing propene molecules from large alkane molecules - Stage 3: joining many propene molecules together. Name Stage 1, Stage 2 and Stage 3. (chemistry only) Choose answers from the box. | cracking | fermentation | fractional distillation | |-----------|--------------|-------------------------| | polymeris | sation reve | rse osmosis | **Stage 1** is _____ **Stage 2** is ______. **Stage 3** is ______. (3) | (g) | A molecule of hexene contains a double carbon–carbon bond. | | | | |-----|--|-------------|--------------|--| | | Many hexene molecules join together to form poly(hexene). | | | | | | Which two words describe a hexene molecule in this process? (chemistry only) | | | | | | Tick (✓) two boxes. | | | | | | Alkene | | | | | | Catalyst | | | | | | Composite | | | | | | Element | | | | | | Monomer | | | | | | | (Total 12 m | (2)
arks) | |